ProfiBus

Interface

for the OMC/TMC Controller

TRANSLATION OF THE GERMAN ORIGINAL MANUAL

© 2013 All rights with: Phytron GmbH Industriestraße 12 82194 Gröbenzell, Germany Tel.: +49(0)8142/503-0 Fax: +49(0)8142/503-190

Every possible care has been taken to ensure the accuracy of this technical manual. All information contained in this manual is correct to the best of our knowledge and belief but cannot be guaranteed. Furthermore we reserve the right to make improvements and enhancements to the manual and / or the devices described herein without prior notification.

We appreciate suggestions and criticisms for further improvement.

Email address: doku@phytron.de

Questions about the use of the product described in the manual that you cannot find answered here, please contact your representative of phytron (http://www.phytron.eu/) in your local agencies.

1 Legal information

This manual:

Read this manual very carefully before mounting, installing and operating the device and if necessary further manuals related to this manual.

- Please pay special attention to instructions that are marked as follows:

\wedge	DANGER – Serious injury!	Indicates a high risk of serious injury or death!
	DANGER – Serious injury from electric shock!	Indicates a high risk of serious injury or death from electric shock!
⚠	WARNING – Serious injury possible!	Indicates a possible risk of serious injury or death!
	WARNING – Serious injury from electric shock!	Indicates a possible risk of serious injury or death from electric shock!
\wedge	CAUTION – Possible injury!	Indicates a possible risk of personal injury.
i	CAUTION – Possible damage!	Indicates a possible risk of damage to equipment.
	CAUTION – Possible damage due to ESD!	Refers to a possible risk of equipment damage from electrostatic discharge.
i	"Any heading"	Refers to an important paragraph in the manual.

Safety Instructions

CAUTION – Possible damage!

Malfunctions are possible while programming the instruction codes – e.g. sudden running of a connected motor, braking etc.

- Please test the program flow step by step.

CAUTION – Possible damage!

For each application, the functional reliability of software products by external factors such as voltage differences or hardware failure, etc. is affected.

- To prevent damage due to system error, the user should take appropriate safety measures. These include back-up and shut-down mechanisms.

CAUTION – Possible damage!

Each end user system is customised and differs from the testing platform. Therefore the user or application designer is responsible for verifying and validating the suitability of the application.

- The suitability of the device's use must be tested and validated.

CAUTION – Possible damage!

Some modules are set to a default value on delivery. So, e.g., the motor current must be set to the corresponding value (see the motor data from the motor manufacturer). Connected components like motors can be damaged by incorrectly set values.

- Please check before starting, if the parameters are correct.

2 Contents

1	Legal information	3
2	Contents	5
3	Basic Information	6
4	The UNIGATE CL-ProfiBusDP Module	7
	4.1 Overview	7
	4.2 Commissioning of the UNIGATE Module	8
	4.2.1 Connection of the OMC/TMC to the UNIGATE Module	8
	4.2.2 Set the ProfiBus Address	8
	4.2.3 Connecting the ProfiBus	8
5	Conditions	9
6	Configuration of the OMC/TMC via SIMATIC Manager (Example)	9
7	Interface Assignment	. 10
	7.1 Master	. 12
	7.1.1 Data set (Commands) (8 bytes)	. 12
	7.1.2 Status Code (Master)	. 14
	7.1.3 Error Code (Master)	. 14
	7.2 Axes	. 15
	7.2.1 Error Code (Axes)	. 18
	7.2.2 Status Code (Axes)	. 18
	7.3 Outputs	. 19
	7.4 Inputs	. 20
	7.5 Analogue Inputs	.21
8	List of Parameters	. 22
9	Warranty, Disclaimer and Registered Trademarks	. 28
	9.1 Disclaimer	. 28
	9.2 Warranty	.28
	9.3 Registered Trademarks	.28
10) Index	.29

3 Basic Information

MINILOG is a programming language to communicate with phytron's programmable controllers OMC/TMC and MCC series. phyLOGICTM is the programming language for the phyMOTIONTM controller. The MINILOG / phyLOGICTM commands can be embedded in other communication protocols (ProfiBus/ProfiNet, Ethernet,...).

Phytron provides software for the control.

The "MiniLog-Comm" software masters only the MINILOG instruction set, but the phyLOGICTM ToolBox can operate both in MINILOG and in the phyLOGICTM instruction set.

You can parameterise your commands (e.g. a run command) per axis either only the first time, when you install your system or adjust the parameters temporarily before you send a run command.

Example: For "relative running" you can set: step resolution (P45), run current (P41), run frequency (P14), Start/stop frequency (P04), ramp (P15), recovery time position (P16), Boost (P17), Boost current (P42), current delay time (P43), etc.

Each of our programmable controllers comes along with pre set parameters (default values), which are automatically loaded into the temporary memory of each axis while starting the device. These parameters can be changed during your program is executed to optimise your motion tasks at any time.

If you want your controller to wake up with a new set of parameters, you have to explicitly store them in the non volatile storage of the main CPU unit by using a certain command.

4 The UNIGATE CL-ProfiBusDP Module

4.1 Overview

The UNIGATE CL-ProfiBusDP component is used to adjust the serial interface of phytron's OMC/TMC stepper motor controller to the ProfiBusDP acc. to EN 50 170.

Fig.1 Overview of the UNIGATE CL-ProfiBusDP

You'll need to connect the stepper motor controller to the ProfiBus via UNIGATE module:

- Cable from the OMC/TMC stepper motor controller (9-pole DSUB female at X31) to the UNIGATE module (free wires at X1). (ID no. 10013499)
- ProfiBus cable
- 24 V_{DC} power supply (DIN 19240)
- GSD file ,UGIC3218.GSD'

4.2 Commissioning of the UNIGATE Module

Perform the following steps during commissioning:

4.2.1 Connection of the OMC/TMC to the UNIGATE Module

Use the supplied cable (ID 10013499).

Plug the 9-pin DSUB connector into the X31 of the OMC/TMC and screw the wire ends into the terminals below the X1 connector of UNIGATE module:

Terminal	Wire						
01	brown	Rx232					
02	white	Tx232					
03	green	GND					
Fig.2 X1 (UNIGATE module)							

4.2.2 Set the ProfiBus Address

Set the ProfiBus address in hexadecimal on the two rotary switches "ID High" and "ID Low".

Example:

The ProfiBus ID is 27 decimal = 1B hexadecimal. The "ID High" switch must be set to 1 and the "ID Low" switch to B.

The rotary switches can be set between 1 and 125.

4.2.3 Connecting the ProfiBus

Connect the PLC master unit to the ProfiBus by the interface named "PROFIBUS".

5 Conditions

- You have an S7 station, consisting of a power supply module and a CPU and configured.
- STEP 7 or TIA Portal is completely installed at your programmer (PG).
- You have knowledge of STEP 7 or TIA Portal.
- The PG is connected to the PROFINET I/O.
- The OMC/TMC controller is connected to the superior main station via ProfiBus module.

6 Configuration of the OMC/TMC via SIMATIC Manager (Example)

- Install the GSD data file ,IC3218OM.GSD'on your PC.
- Start the SIMATIC manager and open the project that you created.
- Add the OMC/TMC device from the hardware catalogue (HW Config) with drag & drop.
- Drag the individual functional modules according to the addressing assembly (see chapter 8)
- Save and compile the hardware configuration with station > save and compile

Addressing

The addressing of the functional modules must be followed exactly to configure the controller!

- The order of the addressing is from low to high! (see chap.8)

7 Interface Assignment

In the ProfiBus system following sequence of the addressing must be maintained for the OMC/TMC controller:

Function	Address
Master	base address +0
Outputs	base address +8
Inputs	base address +16
Axis 1	base address +24
Axis 2 ^{*)}	base address +32
Analogue Input	base address +40

*) not applicable for OMC; analogue input is addressed with base address +32.

Commands can be transmitted to any device function if they are addressed once only. In the following chapter the instruction set is defined for each function by referring to the MINILOG command reference manual.

Definition of the Data length									
Туре	Length	Sign							
Error code	byte	-							
Program number	byte	-							
Output	double word MSBLSB	unsigned long							
Input	double word MSBLSB	unsigned long							
Status	word MSB/LSB	unsigned long							
Analogue value	word MSB/LSB	unsigned long							
Register number	word MSB/LSB	unsigned long							
Distance	double word MSBLSB	data type							
Position	double word MSBLSB	data type							
Parameter value	double word MSBLSB	data type							
Current position	double word MSBLSB	only signed long							
Register value	double word MSBLSB	data type							

Data type	unsigned long	0x00 send byte 2
	signed long	0x10 send byte 2
	float	0x40 send byte 2

7.1 Master

7.1.1 Data set (Commands) (8 bytes)

	Function of the commands (8 bytes)			According to MINILOG command (refer to the command reference manual for OMC/TMC)							
		1	2	3	4	5	6	7	8	command	chap.
	Read master status	00 _H	00 _H	00 _H	00 _H	00 _H	00 _H	00 _H	00 _H	ST	2.15
	Save controller's parameters (start)	02 _H	01 _Н	00н	00н	00н	00н	00н	00н	SA	2.16
	Terminates the save of the controller's parameters ¹	02 _H	00н	00н	00н	00н	00н	00н	00н	_	
	Start program script	03 _H	01 _H	00 _H	00 _H	00 _H	00 _H	00 _H	XX _H ²⁾	QPname A	2.13
	Stop program script	03н	00н	00 _H	00н	00н	00н	00н	00 _H	QPE	2.13
Send	Emergency stop of all axes and outputs are set to zero	04 _H	00 _H	00 _Н	00 _н	00 _Н	00 _н	00 _Н	00 _Н	_	
	Read register										
	signed long	40 _H	10 _H	regist	er no.	00 _Н	00 _H	00 _H	00 _H	RnnR	2.14
	float	40 _H	40 _H	regist	er no.	00н	00н	00н	00н	RnnR	2.14
	Write register										
	signed long	41 _H	10 _H	regist	er no.		registe	r value	RnnSvalue	2.14	
	float	41 _H	40 _H	regist	er no.		registe	r value	RnnSvalue	2.14	

¹⁾ The command 0201_H sets the flag ,Save parameters'. This flag must be reset before resaving the parameters. The command 0200_H resets this flag.

 $^{2)}$ XX_H has to be replaced by the script number which should be started. It must be registered in hexadecimal code. E.g. code 0A_H starts script no. 10.apr .

	Controller Reset status	00 _H	Error code	Status	00 _H	00 _H	00 _H	00 _H
	Read master status		Error code	Status	00 _H	00 _H	00 _H	00 _H
	Save controller's parameters	02 _Н	Error code	Status	00н	00н	00н	00н
ð	Program script		Error code	Status	00 _H	00 _H	00 _H	00 _H
onse	Read register							
espe	signed long	40 _H	10 _H	register no.	register value			
8	float	40 _H	40 _H	register no.	register value			
	Write register							
	signed long	41 _H	10 _H	register no.	o. register			
	float	41 _H	40 _H	register no.				

7.1.2 Status Code (Master)

Status (2 bytes)	Meaning
0001 _H	Parameters were changed
0002 _H	Parameters were saved
0010 _H	Axis 1 stopped
0020 _H	Axis 1 reference point OK
0040 _H	Axis 2 stopped
0080 _H	Axis 2 reference point OK
0100 _H	Internal program is running
0200 _H	Forced switch over to remote via PC
0400 _H	Limit switch of an axis is active
0800 _H	Power stage error of an axis
1000 _H	Programming error: internal program
4000 _H	Input inquiry active (wait for input status)
8000 _H	Remote/Local switch on Remote

7.1.3 Error Code (Master)

Error (1 byte)	Meaning
00 _H	ОК
01 _H	Axis 1 power stage error
02 _H	Axis 2 power stage error

7.2 Axes

					According to MINILOG command (refer to the command reference manual for OMC/TMC)						
	Function	1	2	3	4	5	6	7	8	command	chap.
	Axis status Read	10 _н	00 _н	00 _н	00 _н	00 _н	00 _н	00 _н	00 _H	SE and XPmmR	2.15 2.20
	Axis instruction reset	11 _H	00 _H	Axis no.	00 _H	00 _H	00 _H	00 _H	00 _H	-	-
	Axis stop										
	normal	12 _H	00 _H	00 _H	00 _H	00 _H	00 _H	00 _H	00 _H	XS	2.20
	with emergency stop ramp	12 _H	01 _H	00 _H	00 _H	00 _H	00 _H	00 _H	00 _H	XSN	2.20
	Reference run										
	- direction	13 _H	00 _H	00 _H	00 _H	00 _H	00 _H	00 _H	00 _H	X0-	2.20
	+ direction	13 _H	01 _H	00 _H	00 _Н	00 _н	00 _H	00 _Н	00 _H	X0+	2.20
bne	Free running										
S	- direction	14 _H	00 _H	00 _H	00 _H	00 _Н	00 _H	00 _Н	00 _H	XL–	2.20
	+ direction	14 _H	01 _H	00 _H	00 _H	00 _H	00 _H	00 _H	00 _H	XL–	2.20
	Relative positioning with parameter										
	P14	15 _н	10 _н	00 _H	00 _н	dista	ance, s	igned	long	Xrzvalue	2.20
	P14	15 _н	40 _H	00 _H	00 _Н	C	distanc	e, floa	t	Xrzvalue	2.20
	Absolute positioning										
	with parameter										
	P14	16 _н	10 _H	00 _H	00 _H	Pos	ition, s	igned	long	XArzvalue	2.20
	P14	16 _н	40 _H	00 _H	00 _H		Positio	n, floai	t	XArzvalue	2.20
	Deactivate axis	17 _H	00 _H	00 _H	00 _H	00 _H	00 _H	00 _H	00 _H	XMD	2.20

			Byte						According to MINILO command (refer to the comman reference manual fo OMC/TMC)		
	Function	1	2	3	4	5	6	7	8	command	chap.
	Activate axis	17 _H	01 _H	00 _H	00 _H	00 _H	00 _H	00 _H	00 _H	XMA	2.20
	Reset power stage	18 _H	00 _H	00 _H	00 _H	00 _H	00 _н	00 _H	00 _H	XC	2.20
	Write parameters										
Send	signed long	19 _Н	10 _Н	00 _н	Para- meter no.	Parameter value				XPmm Svalue	2.20
	float	19 _H	40 _H	Axis No.	Para- meter no.	Parameter value				XPmm Svalue	2.20
	Read parameters										
	signed long	1A _H	10 _н	00 _н	Para- meter no.	00 _H	00 _H	00 _н	00 _н	XPmmR	2.20
	float	1A _H	40 _H	00 _н	Para- meter no.	00 _H	00 _н	00 _н	00 _н	XPmmR	2.20

		Byte									
	Function	1	2	3	4	5	6	7	8		
	Read axis status	10 _н	Error code	Status		Current position					
	Axis instruction Reset	11 _H	Error code	Status		Current position					
	Axis stop	12 _H	Error code	Status		Current position					
	Reference running	13 _H	Error code	Status		Current position					
е	Free running	14 _H	Error code	Status		Current position					
suod	Relative Positioning	15 _Н	Error code	Status		Current position					
Res	Absolute Positioning	16 _Н	Error code	Status			Current	position			
	Deactivate axis/ Activate axis	17 _Н	Error code	Status			Current	position			
	Reset power stage	18 _H	Error code	Status		Current position					
	Write parameters	19 _H	Data type	00 _H	Parameter no.	Parameter value					
	Read parameters	1A _H	Data type	00 _H	Parameter no.		Paramet	er value			

7.2.1 Error Code (Axes)

Status (1 byte)	Meaning
00 _H	Module OK
01 _H	Power stage overcurrent
02 _H	Power stage overvoltage
04 _H	Power stage overtemperature
40 _H	SFI Error
80 _H	Encoder Error

7.2.2 Status Code (Axes)

Status (2 bytes)	Meaning
0001 _H	Power stage overcurrent
0002 _H	Power stage overvoltage
0004 _H	Power stage overtemperature
0008 _H	Power stage activated
0010 _H	Initiator – active
0020 _H	Initiator + active
0040 _H	SFI Error
0080 _H	Encoder Error
0100 _H	Motor stops
0200 _H	Reference point OK

7.3 Outputs

Byte							According MINILOG con (refer to t command ref manual f OMC/TM	g to nmand he erence or C)			
Function		1	2	3	4	5	6	7	8	command	chap.
end	Read output status	20 _H	00 _н	00 _H	00 _Н	00 _H	00 _н	00 _н	00 _H	AG 1R	2.1
Š	Read and set output status	21 _H	00 _H	00 _H	00 _H		out	tput		-	-

onse	Read output status	20 _H	00 _H	00 _н	00 _H	output
Resp	Read and set output status	21 _H	00 _H	00 _н	00 _H	output

7.4 Inputs

		Byte								According MINILOG con (refer to t command ref manual f OMC/TM	y to nmand he erence or C)
	Function	1	2	3	4	5	6	7	8	command	chap.
Send	Read input value	30 _H	00 _H	EG1R	2.5						

7.5 Analogue Inputs

		Byte								According MINILOG con (refer to t command ref manual f OMC/TM	g to nmand he erence or C)
	Function	1	2	3	4	5	6	7	8	command	chap.
	Read analogue										
	channel 1	60 _н	00 _н	00 _H	00 _н	00 _н	00 _H	00 _H	00 _H	ADnCxSy	2.2
Send	channel 2	60 _н	00 _н	00 _H	01 _H	00 _н	00 _H	00 _H	00 _H	ADnCxSy	2.2
	channel 3	60 _H	00 _H	00 _H	02 _H	00 _H	00 _H	00 _H	00 _H	ADnCxSy	2.2
	channel 4	60 _H	00 _н	00 _H	03 _H	00 _H	00 _H	00 _H	00 _H	ADnCxSy	2.2

	Read analogue channel					
nse	Channel 1	60 _Н	00 _H	00 _H	00 _H	Analogue value
odse	Channel 2	60 _Н	00 _H	00 _H	01 _H	Analogue value
Ř	Channel 3	60 _Н	00 _H	00 _H	02 _H	Analogue value
	Channel 4	50 _Н	00 _H	00 _H	03 _H	Analogue value

8 List of Parameters

No.	Meaning	Default
P01	Type of movement	0
	0 = Rotational movement Rotating table, 1 limit switch for mechanical zero	
	 linear, for XY tables or other linear systems, 2 limit switches: Mechanical zero and limit direction – Limit direction + 	
P02	Measuring units of movement	1
	1 = step 2 = mm 3 = inch 4 = degree	
P03	Conversion factor for the thread 1 step corresponds to	1
	If P03 = 1 (steps) the conversion factor is 1.	
	Computing the conversion factor:	
	$Conversion \ factor = \frac{Thread}{Number of \ steps \ perrevolution}$	
	Example: 4 mm thread pitch 200-step motor = 400 steps/rev. in the half step mode Conversion factor = $\frac{4}{400} = 0.01$	
P04	Start/stop frequency The start/stop frequency is the maximum frequency to start or stop the motor without ramp. At higher frequen- cies, step losses or motor stop would be the result of a start or stop without ramp. The start/stop frequency depends on various factors: type of motor, load, mechanical system, power stage.	400
	The frequency is programmed in Hz.	
P07	Emergency stop ramp Enter in Hz/s	50 000
P08	f _{max} MØP, Run frequency during initializing Enter in Hz	4000

P09	Ramp MØP, Ramp during initializing, associated to parameter P08	25 000
	Enter in Hz/s	
P10	f _{min} MØP, Run frequency for leaving the limit switch range	400
	Enter in Hz	
P11	MØP Offset for limit switch direction +	0
	Distance between reference point MØP and limit switch activation	
	Unit: is defined in parameter P02	
P12	MØP Offset for limit switch direction –	0
	Distance between reference point MØP and limit switch activation	
	Unit: is defined in parameter P02	
P13	Recovery time MØP	20
	Time lapse during initialization	
	Enter in msec	
P14	f _{max} Run frequency during program operation	4000
	Enter in Hz (integer value)	
P15	Ramp for run frequency (P14)	25 000
	Input in Hz/s (integer value)	
	OMC: 100 Hz/s to 4 MHz/s TMC: 1000 Hz/s to 4 MHz/s	
P16	Recovery time position Time lapse after positioning	20
	Input in msec	

P17	Boost (defined in P42)	0
	0 = off	
	1 = on during motor run 2 = on during acceleration and deceleration ramp	
	Pemarks:	
	The baset surrent can be set in perspector D42	
	The boost current can be set in parameter P42.	
	You can select with parameter P17 in which situation the controller switches to boost current.	
	P17 = 1 means, the boost current always is switched on during motor run. During motor standstill the controller switches to stop current.	
The Thes	following four parameters are counters normally set by the p se parameters are not displayed in the communication s	orogram. oftware!
P19	Electronical zero counter	0
	Used for setting operating points. At standstill of the axis, P19 can be read or programmed during program execution.	
P20	Mechanical zero counter	0
	This counter contains the number of steps referred to the mechanical zero (MØP). Can be read at axis standstill. If the axis reaches the MØP, P20 will be set to zero.	
P21	Absolute counter	0
	Encoder, multi turn and also for single turn.	
	The value of P22 is extended to P21 by software. The encoder counters have a fixed resolution, e.g. 10 bit (for single-turn encoders: the resolution is bits per turn), then the read value repeats. A saw tooth profile of the numerical values is produced during a continuous motor running. This course is "straightened" by software. P20 and P21 will be scaled to the same value per revolution by P3 and P39 and are therefore directly comparable, see P36.	
P22	Encoder counter	0
	Indicates the true absolute encoder position.	
P23	Software Limit Switch (Axial limitation pos. direction +)	0
	If the distance is reached, the run in + direction is aborted.	
	0 = no limitation	

P24	Software Limit Switch (Axial limitation neg. direction –) If the distance is reached, the run in – direction is aborted. 0 = no limitation	0
P25	Compensation for play Indicates the distance, the target position in the selected direction is passed over and afterwards is started in reverse direction. 0 = no compensation for play	0
P26	Divider for SSI encoder Data transfer rate from 10 to 80 (=100 to 800 kHz)	0
P27	Limit switch type 0 = + and – are PNP normally closed contacts (NCC) 1 = + is a normally open contact (NOC), - is a NCC 2 = + is a NCC, - is a NOC 3 = + and – are PNP NOC	0
P28	Output motor brake Define the output number for the motor brake Input for OMC: 1 - 8 for TMC: 1 - 16 Example: output number = 4 The output 4 is set in case of an error in the power stage.	0
P29	Delay time for enabling motor brake The delay time after switch-on for releasing the brake Input in sec	0
P30	Frequency band setting 0 = manual 1 = automatic <u>Remark</u> : It is recommended to work with the automatic setting mode. For each run frequency (P14) and ramp (P15) the controller automatically selects suitable settings.	1

ProfiBus Interface OMC/TMC

P31	Frequency and ramp predivider (only if P30 = 0, manual)	3
	Predivider values: 3 or 5 (OMC: 5, TMC: 3) This parameter can be used for individual settings for special applications.	
P32	Positioning ramp shape	1
	0 = s-shape 1 = linear ramp	
	<u>Remark:</u> The s-shape ramp can be modified with P33 parameter.	
P33	Arc value setting for s-shape ramp	1
	Values: OMC: 1 to 8191 TMC: 1 to 32767	
	f f t	
	P33: low value P33: high value	
P34	Encoder type	0
	-1 = no encoder 0 = incremental 5.0 V 1 = incremental 5.5 V 2 = serial interface SSI binary Code 5.0 V 3 = serial interface SSI binary Code 5.5 V 4 = serial interface SSI Gray Code 5.0 V 5 = serial interface SSI Gray Code 5.5 V	
P35	Encoder resolution for SSI encoder	10
	Enter max. encoder resolution in Bit (max. 32 Bit)	
P36	Encoder function	0
	0 = counter 1 = SFI dynamical step failure indication	
P37	Encoder tolerance for SFI	0
	Enter tolerance value for SFI evaluation	
P38	Encoder preferential direction of rotation	0
	0 = + (positive) 1 = - (negative)	

r		
P39	Encoder conversion factor	1
	1 increment corresponds to	
P40	Stop current in 0.1 A steps	2
	Values: 0 to 6.3 A	
	Input: 0 to 63	
P41	Run current in 0.1 A steps	4
	Values: 0 to 6.3 A	
	Input: 0 to 63	
P42	Boost current as absolute value in 0.1 A steps which is	4
	not added to the run current.	
	Values: 0 to 6.3 A	
P43	Current delay time in ms	20
P44	Control pulses change over	0
	0 = power stage X (Y) on controller X (Y)	
	1 = power stage X (Y) on controller Y (X)	
	2 = external control pulses on power stage X (Y)	
P45	Step resolution	4
	$0 = Full step \qquad 3 = 1/5 step$	
	1 = Half step 4 = $1/10$ step 2 = $1/4$ step 5 = $1/20$ step	
	2 - 1/4 step $3 - 1/20$ step 6 = 1/8 step	
	- F	

9 Warranty, Disclaimer and Registered Trademarks

9.1 Disclaimer

Phytron GmbH has verified the contents of the manual to match with the hardware and software. However, errors and omissions are exempt and Phytron GmbH assumes no responsibility for complete compliance. The information contained in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

9.2 Warranty

The OMC/TMC modules are subject to **legal warranty**. Phytron will repair or exchange devices which show a failure due to defects in material or caused by the production process. This warranty does not include damage caused by the customer, for example, not intended use, unauthorised modifications, incorrect handling or wiring.

9.3 Registered Trademarks

In this manual several trademarks are used which are no longer explicitly marked as trademarks within the text. The lack of these signs may not be used to draw the conclusion that these products are free of rights of third parties. Some product names used herein are for instance.

- *phy***MOTION**[™] is a trademark of the Phytron GmbH.
- *phy***LOGIC**[™] is a trademark of the Phytron GmbH.
- Microsoft is a registered trade mark and WINDOWS[™] is a trade mark of the Microsoft Corporation in the USA and other countries.
- *phy***LOGIC[™]** ToolBox is trademark of the Phytron GmbH.
- SIMATIC ET 200[®]S, STEP 7, TIA Portal is trademark of the SIEMENS AG.
- Microsoft is a registered trade mark and WINDOWS[®] is a trade mark of the Microsoft Corporation in the USA and other countries

10 Index

Α

Address 8 Axis 16 Axis module 15

С

Cable 7 Compensation for play 25 Configuration 9 Copyright 2 Counter 24

G

GSD 9 GSD file 7

Η

HW Config 9

I

Input 21 Input 20, 21

Μ

master 12 Master 14

0

Output 20

Ρ

Parameter 6 *phy*LOGIC[®] 6 Positioning ramp shape 26 Predivisor 26 ProfiBus 7 ProfiBusDP 7

S

S7 station 9 Safety instructions 4 S-shape ramp 26 Start-/Stop frequency 22 STEP 7 9 Supply voltage 7

U

UNIGATE CL 7

W

Warranty 28